to Metals
to Coating technologies
Dr. Dmitri Kopeliovich
Copper plating is a process of copper deposition over a part immersed into an electrolyte solution and used as a cathode, when the copper anode is being dissolved into the electrolyte in form of the copper ions traveling through the solution and depositing on the cathode surface.
Phosphorized copper (0.04-0.08% P)is recommended for the anodes in [Copper plating#Acid copper sulfate bath]] and Acid copper fluoborate bath.
High purity oxygen-free copper is used for the anodes in Cyanide copper bath and Copper pyrophosphate bath. Less pure anodes form sludges on their surfaces. The sludge particles may increase the deposit roughness.
Anode-to-cathode area ratio is kept within the range between 1 and 2.
The copper electrolyte solutions are normally agtated by the solution flow, oil-free air or by the oscillating cathodes.
The solutions are continuously filtered through a 1-5 μm filters at a flow 1-3 turnovers/hour (at least).
Cyanide copper (particularly strike bath) provides excellent adhesion of the copper deposit. Cyanide baths are used for applying strike adhesion coatings and for wire plating
Compositions of cyanide copper baths | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CuCN | NaCN | KCN | Na2CO3 | NaOH | KOH | Rochelle salt | Cu | Free cyanide | ||||||||||
Bath | oz/gal | g/l | oz/gal | g/l | oz/gal | g/l | oz/gal | g/l | oz/gal | g/l | oz/gal | g/l | oz/gal | g/l | oz/gal | g/l | oz/gal | g/l |
Strike | 2.0 | 15 | 3.7 | 28 | 2.0 | 15 | 1.4 | 10.5 | 1.5 | 11 | ||||||||
Rochelle salt | 3.5 | 26 | 4.6 | 35 | 4 | 30 | to PH=12.3 | 6 | 45 | 2.5 | 19 | 0.8 | 6 | |||||
High speed | 8 | 60 | 12.5 | 94 | 2 | 15 | 5.6 | 42 | 5.6 | 42 | 1.0 | 7.5 |
Operation conditions of cyanide copper baths | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature | Cathode current density | Anode current density (max.) | Cathode efficiency | Max.deposit thickness | Agitation | Filtration | ||||||||||
Bath | °F | °C | A/ft2 | A/dm2 | A/ft2 | A/dm2 | % | mil | μm | |||||||
Strike | 120-145 | 49-63 | 10-30 | 1-3 | 10 | 1 | 30-60 | 0.1 | 2.5 | Solution flow | Continuous | |||||
Rochelle salt | 130-160 | 54-71 | 20-40 | 2-4 | 30 | 3 | 50 | 0.2 | 5.0 | Solution flow | Continuous | |||||
High speed | 170-180 | 77-82 | 30-60 | 3-6 | 50 | 5 | 100 | 0.3-2.0 | 7.5-50 | Solution flow, mechanical, air | Continuous |
Cyanide copper bath troubleshooting guide
Possible causes: 1.Poor cleaning treatment (Surface preparation); 2.Contaminated Rinsing water
Possible causes: 1. Low free cyanide; 2.Insufficient agitation; 3.High anode current density; 4.High operation temperature; 5.Organic contamination
Possible causes: 1.Suspended solid particles in the solution; 2.Rough substrate surface; 3.High current density; 4.Organic contamination
Possible causes: 1.Low free cyanide; 2.Insoluble particles in the solution
Possible causes: 1.Low brightner; 2.Organic contamination
Possible causes: 1.Low copper; 2.High free cyanide
Possible causes: 1.Low free cyanide; 2.Low Rochelle salt
to the top
Copper pyrophosphate baths provide high throwing power and ductile copper deposition. They are used in electroforming, plating on plastics, printed circuit boards, and as stopp-off in selective Case hardening of steel.
Copper pyrophosphate is a weak alkaline process.
Composition of copper pyrophosphate bath | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Copper | Pyrophosphate | Nitrate | Ammonia | Weight ratio P2O7/Cu |
||||||||||||||
oz/gal | g/l | oz/gal | g/l | oz/gal | g/l | oz/gal | g/l | |||||||||||
3.5 | 26 | 25 | 188 | 1.5 | 11 | 0.13 | 1 | 7-8.5 |
Operation conditions of acid copper pyrophosphate bath | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature | Cathode current density | Cathode efficiency | Voltage | PH | Filtration | Agitation | ||||||||
°F | °C | A/ft2 | A/dm2 | % | V | |||||||||
100-140 | 38-60 | 10-70 | 1-7 | 95-100 | 2-5 | 8-8.5 | Vigorous air | Continuous 1 turnover/hr |
Copper pyrophosphate bath troubleshooting guide
Possible causes: 1.Poor cleaning treatment (Surface preparation); 2.Contaminated Rinsing water
Possible causes: 1.High copper metal; 2.Insufficient agitation; 3.Low copper/pyrophosphate ratio; 4.High operation temperature; 5.Organic contamination
Possible causes: 1.Suspended solid particles in the solution; 2.Rough substrate surface; 3.High current density; 4.Metallic contamination
Possible causes: 1.High brightner content; 2.Organic contamination; 3.Excessive ammonia
Possible causes: 1.Low brightner; 2.Organic contamination; 3.Low ammonia
Possible causes: 1.Low copper; 2.Insufficient agitation; 3.Low operation temperature; 4.low pyrophosphate
Possible causes: 1.High operation temperature; 2.Low copper/pyrophosphate ratio
to the top
Copper sulfate baths provide high throwing power. The plating process and the waste treatment are relatively inexpensive. Copper sulfate copper plating is widely used in electronics (printed circuit boards, semiconductors), electroforming and for application undercoats.
Compositions of acid copper sulfate baths | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Copper sulfate CuSO4*5H2O | Sulfuric acid H2SO4 | Chloride ion Cl- |
||||||||||||||||
Bath | oz/gal | g/l | oz/gal | g/l | ppm | |||||||||||||
General | 27 | 200 | 9.3 | 70 | 75 | |||||||||||||
High throw | 10 | 75 | 25 | 188 | 60 | |||||||||||||
High speed | 50 | 375 | 8 | 60 |
Operation conditions of acid copper sulfate baths | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature | Cathode current density | Anode current density (max.) | Anode/cathode area ratio (min.) | Agitation | Filtration | |||||||||||
Bath | °F | °C | A/ft2 | A/dm2 | A/ft2 | A/dm2 | ||||||||||
General | 70-100 | 21-38 | 40 | 4 | 40 | 4 | 1 | Vigorous air | Continuous 3 turnover/hr |
|||||||
High throw | 70-90 | 21-32 | 15-50 | 1.5-5 | 7-25 | 0.7-2.5 | 2 | Air or mechanical | Continuous 2 turnover/hr |
|||||||
High speed | 64-113 | 18-45 | 50-200 | 5-20 | 20-100 | 2-10 | 2 | Vigorous air or mechanical | Continuous 2 turnover/hr |
Acid copper sulfate bath troubleshooting guide
Possible causes: 1.Poor cleaning treatment (Surface preparation); 2.Contaminated Rinsing water
Possible causes: 1.High copper metal; 2.Low acid; 3.Low brightner content
Possible causes: 1.Suspended solid particles in the solution; 2.Rough substrate surface; 3.High chloride; 4.Low brightner content; 5.High rectifier ripple
Possible causes: 1.High chloride; 2.Insufficient anode area; 3.Organic contamination 4.Low temperature; 5.High acid; 6.Low copper
Possible causes: 1.Low copper; 2.High acid; 3.Low chloride; 3.Insufficient agitation; 4.Organic contamination
Possible causes: 1.Low chloride; 2.Organic contamination
to the top
Copper fluoborate baths provide high plating speed. They are used in printed circuit boards, electroforming, plating on plastic.
Compositions of acid copper fluoborate baths | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Copper fluoborate Cu(BF4)2 | Copper metal | Fluoboric acid HBF4 | Boric acid H3BO3 |
|||||||||||||||
Bath | oz/gal | g/l | oz/gal | g/l | oz/gal | g/l | oz/gal | g/l | ||||||||||
Low concentration | 30 | 225 | 8 | 60 | 2 | 15 | 2 | 15 | ||||||||||
High concentration | 60 | 450 | 16 | 120 | 4 | 30 | 4 | 30 |
Operation conditions of acid copper fluoborate baths | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature | Cathode current density | Cathode efficiency | Agitation | Filtration | ||||||||||||
Bath | °F | °C | A/ft2 | A/dm2 | % | |||||||||||
Low concentration | 80-170 | 27-77 | 75-125 | 7.5-12.5 | 95-100 | Air or mechanical | Continuous carbon | |||||||||
High concentration | 80-170 | 27-77 | 125-350 | 12.5-35 | 95-100 | Air or mechanical | Continuous carbon |
Acid copper fluoborate bath troubleshooting guide
Possible causes: 1.Poor cleaning treatment (Surface preparation); 2.Contaminated Rinsing water
Possible causes: 1.High copper metal; 2.Low acid; 3.Low operation temperature; 4.High current density
Possible causes: 1.Suspended solid particles in the solution; 2.Rough substrate surface; 3.Low brightner content; 4.High rectifier ripple
Possible causes: 1.High temperature; 2.High acid; 3.Low current density
Possible causes: 1.Chloride contamination; 2.Organic contamination
Possible causes: 1.Low grain refiner; 2.High hardener content
to the top
to Metals
to Coating technologies